

Patient compliance estimated from pharmacokinetic (PK) sample: **Application to imatinib**

Emilie Hénin¹, Véronique Trillet-Lenoir^{1,2}, Brigitte Tranchand^{1,3}, Michel Tod ¹, Pascal Girard ¹

¹ EA3738 CTO, Faculté de Médecine Lyon-Sud, Université de Lyon; ² Service d'Oncologie Médicale, Hospices civils de Lyon; ³ Centre Léon Bérard, Lyon

Introduction

. In a previous study¹, we proposed a methodology to estimate patient compliance to an oral anticancer chemotherapy from a single PK sample taken on day 10, sparse sample taken on day 1 and a population PK model . The method was evaluated in silico with the capecitabine/FBAL example (ratio $t_{1/2}$ / τ = 0.25 [†]) and adherence to doses given up to 5 t¹/₂ could be correctly estimated

 $^{\dagger}\,t_{\nu_{2}}$ is the drug plasma elimination half-life, τ is the interdose interval

Objectives

Evaluate further our methodology on an anticancer oral drug, imatinib (Glivec[®])

• dose taken O dose not taken

D3 D2 D1

5 • • C

6000

7000

8000

D. D. D.

2000

4000

..

0.

Methods

Idea of the compliance estimation method

Extract the compliance information from a single PK sample and compare it to corresponding concentration Bayesian predictions and given a pop PK model

- · 8 compliance patterns were defined as the sequence of last 3 doses taken or not (Figure 1) Figure 1: Compliance patterns
- 2 types of information are needed:
- · population PK model describing the evolution of plasma conc. and parameter statistical distributions

· individual conc. predictions derived from Bayesian posthoc estimates

Simulation procedure

- . 1000 PK parameter sets drawn according to a priori population distributions and each simulated patient is assumed to have a given compliance pattern
- · Simulation of sparse conc. on day 1 and one conc. on day 10
- · Re-estimation of individual Bayesian PK parameters based on day 1 sparse samples
- · Comparison of the actual concentration versus the predicted ones computed according to each pattern
- . Choice of the compliance profile which minimise the distance between actual and predicted value

Performance of the compliance estimation

Evaluation at several time points after last taking on day 10

- · Last1T: % patients for which last taking is well predicted
- . Last2T: % patients for which last 2 takings are well pred.
- . Last3T: % patients for which last 3 takings are well pred.

Impact of the error model on performance

Quantification by simulating various magnitude of the residual error CV (1, 5, 10, 20, 30, 40 and 50%)

References

- 1. Hénin et al, PAGE 16-Abstr 1193, 2007, Copenhagen
- 2. Widmer et al, Br J Clin Pharmacol 62: 97-112, 2006

In silico evaluation

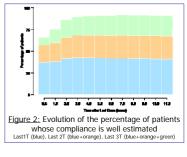
Imatinib ($t_{\frac{1}{2}}/\tau = 0.625$)

- · One compartment pop PK model published by Widmer et al² with first order absorption and elimination
- · Residual variability modelled with an exponential error model with CV 31%
- . 500 mg once daily
- · 4 PK samples taken on day 1 at 0.1, 1.6, 7.1 and 18 h
- · 1 PK sample taken on day 10

Results

The best estimation is obtained 5 hours after last dose taking on day 10:

.but performance is quite stable through time compliance over the 2 last takings is correctly estimated (Table I – CV 31%)



Impact of the CV of the residual error model

	<u>Table 1:</u> Performance of the estimation method at the best sampling time								
	CV	Sampling time at day 10	Last 1T	Last 2T	Last 3T				
	31%	5 hours	91.8	69.6	44.4				
	1%	Any	100	100	100				
	5%	2 hours	99.8	99.1	89.0				
	10%	3 hours	99.1	92.9	70.5				
	20%	5 hours	94.4	77.6	51.0				
	30%	5 hours	90.9	68.9	42.6				
	40%	5 hours	87.1	63.3	37.8				
	50%	5 hours	83.9	58.9	34.5				

Comparison with Capecitabine/FBAL example (CV~20%) Table II: Performance of the estimation method in both examples

Run	$t_{1/_2}/\tau$	Sampling time at day 10	Last 1T	Last 2T	Last 3T
Imat. 20%	0.625	5 hours	94.4	77.6	51.0
FBAL	0.25	5 hours	99.8	71.9	44.6

Conclusion and perspectives

- · 2 parameters have an effect on the method performance ratio t_{1/2} / τ
 - $\cdot \sigma$ the magnitude of the error model
- · PK method is not informative enough and should be associated to electronic monitoring in a future clinical study (OCTO – Compliance to an oral chemotherapy)